
Extracting Secret Key from Wireless Link Dynamics
in Vehicular Environments

Xiaojun Zhu∗†, Fengyuan Xu†, Edmund Novak†, Chiu C. Tan‡, Qun Li† and Guihai Chen∗§
∗State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210024, China

†Department of Computer Science, the College of William and Mary, Williamsburg, VA 23185, USA
‡Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

§Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai 200240, China

Email: gxjzhu@gmail.com, {fxu,liqun}@cs.wm.edu, ejnovak@email.wm.edu, cctan@temple.edu, gchen@nju.edu.cn

Abstract—A crucial component of vehicular network security
is to establish a secure wireless channel between any two vehicles.
In this paper, we propose a scheme to allow two cars to extract a
secret key from RSSI (Received Signal Strength Indicator) values
in such a way that nearby cars cannot obtain the same secret. Our
solution can be executed in noisy, outdoor vehicular environments.
We also propose an online parameter learning mechanism to
adapt to different channel conditions. We conduct extensive real-
world experiments to validate our solution.

I. INTRODUCTION

Vehicular networks have gained considerable research in-
terest recently given their potential in improving public safety
and traffic management [1]–[3]. Security is an important
component in any vehicular network, and one of the most
fundamental security requirements is the ability to establish a
secure channel between two arbitrary cars. Rather than relying
on a public key infrastructure (PKI) based solution [4], in this
paper, we propose an alternative approach to allow two arbi-
trary cars to establish a secret key for secure communications.
Our approach can be used in environments where a PKI has not
been established. In fact, our approach does not even require
the deployment of any special road-side wireless infrastructure.

This is done by having both cars continuously sampling
the wireless link and then extracting a shared secret key based
on the signal strength fluctuations. The security of the key
relies on the unpredictable nature of wireless dynamics, which
cannot be observed by an adversary at a distance more than
half the wavelength of the wireless signal (e.g., that is 6.25cm
for 2.4GHz wireless channel). To sample channel dynamics,
two parties capture RSSI values by sending packets back and
forth to each other. This will require addressing the following
challenges that have rendered the previous approaches [5]–[8]
unusable.

First, vehicular environments have very short channel
coherence time, the time duration for which the wireless
channel remains unchanged, due to rapid environment change.
Measurements [9], [10] have shown that channel coherence
time in vehicular environments can be as short as a few
hundred microseconds. Although short coherence time will
give high randomness for key extraction in low speed mobile
environments [5]–[8], very short coherence time in vehicular
environments will pose a big challenge to key extraction. This

The work was done when the first author was visiting the College of William
and Mary.

is because, to sample the same channel dynamics, the two
pairing packets sent by the two parties must be within a
duration of coherence time. Due to the half-duplex nature of
current wireless platforms, however, we find that the round-trip
time of a wireless packet may be longer than the coherence
time. Applying existing solutions to vehicular environments
results in unsatisfactorily slow key generation.

Second, we choose RSSI because it is widely available
among off-the-shelf 802.11 radios so that our solution can be
readily implemented on existing wireless platforms without
hardware changes. But RSSI has a poor accuracy in charac-
terizing channel condition, compared to the Channel Impulse
Response (CIR) measurements [5]. We refer to both the short-
coherence-time effect and the RSSI error as noise due to the
inability to distinguish them.

The fundamental issue in this project is to reduce the
effect of noise in our vehicular traces. After filtering out the
slow variation [5], which are caused by distance changes,
we observe that the noise is very strong, comparable to the
level of fluctuation due to the channel dynamics. For high
quality traces considered by previous research, the noise level
is negligible compared to the signal fluctuation, which is not
the case in our trace. Thus, we have a dilemma. If we keep
a large portion of the fluctuation, i.e., do not filter out noise
sufficiently, the mismatches of bits at the two sides will become
so numerous that the number of final extracted bits will be
zero after subtracting the effort to correct such mismatches.
On the other hand, if we remove too much of the fluctuation,
even though mismatches are reduced, the final bits will contain
little randomness. Therefore, the main obstacle of this paper
is to delineate the fine line between noise and fluctuation of
the channel dynamics.

To the best of our knowledge, we are the first to consider
key extraction in vehicular environment using RSSI values.
None of the previous methods [5]–[8] can be used directly
in extracting secret bits in vehicular environments. We have
achieved a bit rate around 5 b/s, which is much higher than
the previous 1 b/s with the same wireless card platform [5].
Our contributions are as follows. (1) We propose a systematic
way to ensure the randomness of the resulting key. With this
approach, we know the rate at which we can extract entropy
bits. We also select a randomness extractor to actually extract
perfect random bits. The extracted bits pass NIST test [11]. (2)
We propose an online parameter learning scheme to adaptively
adjust parameters which offers more steady performance in dif-

ferent environments. (3) We propose weighted sliding window
smoothing to reduce noise. The novelty of this technique is
that it can smooth out local noise, and also compensate for
the mismatched sensing time due to the half-duplex nature
of existing wireless platform. Experiments show that this
technique can improve the performance 50% more than non-
smoothing case. (4) Our experiments are conducted using data
collected from real world environments.

II. RELATED WORK

Several researchers have proposed to use the unpredictabil-
ity of the radio channels to extract secret keys. Azimi-Sadjadi
et al. [12] first propose an extraction scheme based on signal
envelopes and evaluate it against a Rayleigh fading channel
model. Later both Mathur et al. [5] and ABSG [7] leverage
the channel’s level crossings to generate secret keys shared
between two parties in the indoor and low-speed outdoor
environments respectively. Group key extraction is considered
in [13], and the key extraction in [14] is for securing im-
plantable medical devices. Other key extraction approaches [8],
[15] are also proposed specifically for the mote platform. There
has also been much work on protecting WLANs and sensor
networks [16]–[19]. However, neither of them considered key
extraction in vehicular networks, where the radio channel has
unique characteristics.

Eliminating the dependency among measured samples is
critical for the security of the key extraction, but unfortunately
the methods applied in prior work do not handle it well. The
sub-sampling method in [5], [6] discards many samples along
with useful mutual information. That information is precious
to our key extraction scheme due to short window of channel
sampling time. HRUBE [8] tries to utilize all samples through
de-correlation process. The main drawback is that the results,
though uncorrelated, may still be dependent. In contrast, we
analyze the sample dependency and split the sample sequence
accordingly into independent sub-sequences. Therefore we do
not waste captured channel information nearly as much.

Additionally, we propose using a deterministic randomness
extractor for entropy condensing, rather than the random
hashing scheme applied in the previous work [7]. This is
because the efficiency (the number of output bits to the number
of input bits) of random hashing extractors is upper bounded
by the min-entropy of the input bits, and it is inappropriate to
use NIST test for validation on the final key because the seeds
of random hashing are from an additional random source.

III. BACKGROUND

Our focus is to extract a shared secret key for two moving
cars. We assume that the two cars have a wireless channel to
exchange messages when they meet, and they have the ability
to record the RSSI reading of the exchanged messages. The
two cars, Alice and Bob, exchange messages over wireless
channel and record RSSI readings of each message. Any third
party, Eve, cannot infer any information about the key. We
consider the passive adversary model where the adversary has
complete knowledge about the procedure and the exchanged
messages. This model is the same as [7], [8].

The general key establishment process is as follows. Here,
we assume Alice initiates the process. Alice keeps sending

indexed probes to Bob, and Bob immediately returns back
acknowledgements (ACKs) upon reception. The probes and
ACKs are made as short as possible to deal with the short-
coherence-time issue. Both sides record the RSSI reading of
received packets along with their indices. Denote by X =
(x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) the RSSI readings
observed by Alice and Bob respectively. Alice and Bob will
extract random bits from X and Y respectively. We also refer
to X and Y as raw data or raw readings. A classic method for
key extraction is level crossing [5]. Next, we will introduce the
principals behind level crossing and its limitations, followed
by our techniques to address these limitations.

A. Level crossing: overview and limitations

Level crossing consists of two steps. First, Alice and Bob
keep probing the channel and collecting RSSI readings. They
map each reading to a temporary bit as follows. Consider the
case for Alice. Let μX be the mean of X , σX be the standard
deviation. Each reading x is mapped to a temporary bit via a
quantizer Q such that Q(x)=1 if x > q+; Q(x) =0 if x < q−;
Q(x) =e, otherwise, where e is a undefined state and q+ =
μX + ασX , q− = μX − ασX where α is a parameter to be
tuned. This can be seen in Figure 2. Bob’s quantizer is similar.

Second, Alice and Bob communicate to get final bits from
temporary bits. They identify excursions in temporary bits. An
excursion is a consecutive of 1s or 0s with length at least m
where m is the second parameter to be tuned. For example,
if the temporary bits are “e0000111e111e” and m = 3, then

there are 3 excursions: e
︷︸︸︷
0000

︷︸︸︷
111 e

︷︸︸︷
111 e. Alice finds from

her temporary bits all excursions, and sends the indexes of
all excursion centers to Bob. On receiving the indexes, Bob
checks each index to see whether he also has an excursion
around this index, and sends the result back to Alice. Finally,
they quantize each common excursion to a bit. For the above
example, if Bob has the same temporary bits, then they both
get 011. We name the final bits (a bit vector) as quantized bits.
The bits at Alice and Bob may be different. Each different bit
is a mismatch. The ratio of the number of mismatches and the
number of quantized bits is defined as mismatch rate.

The level crossing algorithm subtracts a windowed moving
average from the raw data to reduce the influence of slow
variation, where the output of the sliding window is the slow
variation. This creates the third parameter: the window size s.
The residuals, rather than the raw readings, are fed into the
quantizer Q. In summary, we have three parameters: reading
threshold α, excursion threshold m, and window size s.

To determine the effectiveness in a vehicular environ-
ment, we implemented the two most relevant methods, level
crossing [5] and ABSG [7]. Due to the noise in a vehicular
environment, the ABSG method applied to our trace leads to a
very high mismatch ratio, which renders the secret extraction
rate not satisfactory. Our experiments find that the generic
level crossing method [5] can result in low mismatch ratio.
Therefore, we mainly improve on the generic level crossing
method. However, directly applying level crossing is not suf-
ficient to achieve good bit rate. Even though level crossing is
a groundbreaking approach to secret extraction, it has some
questions that are not answered. Applying it to our vehicular
trace shows the following problems.

0 20 40 60 80 100
36

37

38

39

40

41

↑
Bob

↓
Alice

Probe sequence number

R
S

S
I

Fig. 1. High noise in vehicular environment.
RSSI of Alice changes in a different way as Bob.
When Alice goes 1db down, Bob usually remains
the same, or even goes 1db up.

7400 7500 7600 7700 7800 7900

−4

−2

0

2

4

R
S

S
I o

f A
lic

e

7400 7500 7600 7700 7800 7900

−4

−2

0

2

4

R
S

S
I o

f B
ob

Index number

Fig. 2. Level crossing on a portion of residuals.
The two lines for Alice (top) or Bob (bottom)
are the q+, q− in quantizer Q, and each triangle
corresponds to a quantized bit.

0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

Block index

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 3. Non-stable channel condition. Each block
corresponds to 2-second residuals. Correlation co-
efficient changes over time and it reflects the noise
level.

First, we observe high noise level in vehicular environ-
ments. To illustrate, we plot 100 raw readings from a collected
vehicular trace in Figure 1. (The process of trace collection
is elaborated in the experiment section.) We can see that the
noise level is high. Indeed, the residuals (after subtracting
slow variations from raw readings) for this trace have a low
correlation coefficient of 0.52. We have to design schemes
to remove the noise; otherwise it causes mismatches which
seriously influence the performance.

Second, there are no guidelines to select parameters for lev-
el crossing. In our experiments we notice that the performance
is very sensitive to parameter setting. Setting parameters,
however, is hard due to the noise level comparable to channel
dynamics. We need to find the fine line to separate the noise
and the channel fluctuation so that the mismatch ratio is low
and the generated bits will contain high randomness.

Third, the level crossing scheme does not estimate the
randomness of the generated bit string nor does it generate
a bit string that is necessarily random. We show one such
case in Figure 2. In the figure, the quantized bits are not
random (readings are consecutively below the lower thresh-
old or over the upper threshold). They are dependent. The
original paper [5] employs subsampling on quantized bits to
counteract dependency. We find, however, random subsampling
can discard many important bits containing high randomness,
resulting in slow key generation. Instead, we aim to find an
optimal and controllable method to remove dependency among
the generated bits.

Fourth, the level crossing scheme uses a fixed set of
parameters, which does not adapt to the drastic change of
channel dynamics in vehicular environments. Figure 3 shows
the correlation coefficient of residual readings at different time
periods (2-second units). We observe that the correlation varies
at different times, which suggests that a fixed set of parameters
may not work well.

B. Overview of our approach

We organize our solution into the framework shown in
Figure 4. After sampling, we smooth the raw readings to
reduce noise. Our technique is weighted sliding window s-
moothing. The novelty is that Alice and Bob cooperate to
choose the weights such that the resulting smoothed readings

Online parameter learning

Smoothing
Level

crossing Reconciliation
Entropy estimation

and
randomness extractor

Privacy
amplification

Fig. 4. Flowchart of the system. We focus on the three steps within solid
boxes, each of which is a section in this paper.

have maximum correlation. The smoothed readings are fed into
the level crossing algorithm, which produces quantized bits.

However, the quantized bits at Alice and Bob may be
different. These different bits, i.e., mismatches, are corrected
by information reconciliation. We implement Cascade [20], a
classical information reconciliation method. During informa-
tion reconciliation, there will be exchanged parity bits that are
exposed to the adversary. This exposed information will be
removed by privacy amplification.

After information reconciliation, Alice and Bob have the
same quantized bits (otherwise, they will restart the process).
But the bits may not be secure due to dependency. To deal with
this issue, Alice (Bob) extracts random bits from her (his) own
quantized bits. This is done by using a deterministic random-
ness extractor based on a Markov model of the quantized bits.
Besides extracting random bits, they also estimate the entropy
contained in the quantized bits. To evaluate the randomness of
their extracted bits, we use the NIST test [11], the state-of-
the-art statistical test tool for randomness.

Now the two sides have perfect random bits, but the bits
are still not secure because the information reconciliation step
leaks some information. We apply privacy amplification [21]
to distill such information. The final key is secure.

To cope with the non-stable channel condition, we propose
an online parameter learning scheme. In the three parameters
of level crossing, we choose to learn the reading threshold α
online. The scheme can tolerate non-stable channel condition.

C. Performance metric

To determine how well our scheme works, we define our
metric approximate entropy bit rate as

abps = E · (nq − np)/t

where E is the estimated Shannon entropy per bit of quantized
bits, nq is the number of quantized bits, np is the number
of exchanged parity bits during reconciliation, and t is the
time duration of the trace. Note that this metric has taken into
account the leaked information during reconciliation.

We also define several related terms. First, quantized bit
rate: qbps = nq/t. It is the raw rate of level crossing, and
does not take into account the leaked information. Second,
since we select a randomness extractor to actually extract
the entropy, we have secret bit rate: sbps = (ne − npE)/t
where ne is the number of extracted bits by our randomness
extractor. It does take into account the leaked information.
We have sbps ≤ abps ≤ qbps. The metric abps reflects
the entropy bits per second. Our current implementation can
achieve sbps, and in theory it can be improved to approach
abps. For all three bit rates, there are associated mismatch
rates. The mismatch rate for qbps has been defined previously.
The mismatch rates for abps and sbps are defined as the
percentage of remaining mismatches in the quantized bits after
information reconciliation. For mismatch rate, we use a single
notation γmis for three different rates. It can be judged from
context which bit rate it is corresponding to.

IV. SMOOTHING

Vehicular networks operate in very noisy environments
which will severely affect the performance of any key es-
tablishment algorithm. We propose to use weighted sliding
window smoothing to address the issue of noise.

For a fixed window size k (to be determined in exper-
iments), we assign different weights a = (a1, a2, . . . , ak)
and b = (b1, b2, . . . , bk) to readings at Alice and Bob
respectively. Let

∑
ai = 1 and

∑
bi = 1. The ith s-

moothed reading is x′
i =

∑k
j=1 ajxi+j−1 (Alice) y′i =∑k

j=1 bjyi+j−1 (Bob). Note that if a = (1/k, 1/k, . . . , 1/k)
and b = (1/k, 1/k, . . . , 1/k), then this is the standard sliding
window smoothing scheme. Ideally, we want to find an a and a
b to maximize our metric, abps. This problem is hard to solve
because the abps is computed after a series of operations, each
of which is not describable by a simple function. We turn to
another objective, to maximize the correlation coefficient of
resulting bit sequences. Let X ′ = (x′

1, x
′
2, . . . , x

′
n−k+1) and

Y ′ = (y′1, y
′
2, . . . , y

′
n−k+1). Then our objective is

max
a,b

ρX′,Y ′ (1)

We solve the problem by transforming it into canonical
correlation analysis (CCA) [22]. Given two matrix A ∈ Rn×d1

and B ∈ Rn×d2 , CCA focuses on finding a linear combination
of A’s column vectors and a linear combination of B’s column
vectors such that the correlation coefficient of the two new
vectors is maximized. The linear combination for A involves
d1 coefficients (there are d1 column vectors), and the linear
combination for B involves d2 coefficients.

Our transformation is as follows. Let xj
i denote the

column vector (xi, xi+1, . . . , xj) and yj
i defined simi-

larly. Let A =
[
xn−k+1
1 ,xn−k+2

2 , . . . ,xn
k

]
and B =[

yn−k+1
1 ,yn−k+2

2 , . . . ,yn
k

]
where A,B ∈ R(n−k+1)×k. Ap-

plying CCA on A and B yields two linear combinations. The

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

pa
rt

ia
l a

ut
oc

or
re

la
tio

n

Fig. 5. Partial correlation coefficient.

linear combination for A gives the optimal a , and the linear
combination for B gives the optimal b. Now we have the
optimal solution to problem (1). The computation involves
eigenvalue decomposition to a matrix with size k × k. Given
that k is usually very small in our case, it is computational
efficient to solve the problem.

V. ENTROPY ESTIMATION AND RANDOMNESS

EXTRACTOR

After using level crossing to generate quantized bits, we
apply information reconciliation to correcting the mismatches.
Then each side has the same quantized bits, and will solve the
dependency issue in the quantized bits. In the following, we
take the quantized bits from one trace as an example.

A. Dependency modeling

We first show that quantized bits have limited dependency
(each bit depends on finitely many previous bits), then we use
a Markov chain to model the dependency.

To show the limited dependency property, we plot in
Figure 5 the partial autocorrelation coefficient (pacf) [23] of
the quantized bits of one trace. Intuitively, pacf describes the
correlation between two bits after eliminating the influence of
bits in-between. (Note that it is different from autocorrelation
where the influence is not subtracted.) For lag ≥ 4, the
absolute value of pacf is very small, meaning each bit only
depends on the previous 3 bits. Therefore, quantized bits have
finite dependency, we can model it using a Markov chain.

Generally, suppose each bit only depends on the previous
bit, then there is one bit memory. The memory can be recorded
as S(1) = {0, 1}. We call this the state space of Markov chain.
If each bit depends on two previous bits, then we can use
2nd order Markov chain to model it. Its memory space is
S(2) = {00, 01, 10, 11}. Generally, if each bit depends on the
previous k bits, then the state space is S(k). We should estimate
the order since it is unknown in practice.

This order is estimated by the popular BIC (Bayesian
Information Criterion) Markov order estimator [24]. It works
as follows. Let n be the total number of bits. Let sj1 =
(s1, s2, . . . , sj) and N(sj1) be the number of occurrences of

substring sj1 in the bit string. Then the estimated order k is the
number that minimizes the objective function L(k)

min
k

L(k) = − logPML(k) + 2k−1 log n (2)

0 2 4 6 8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

E
st

im
at

ed
 e

nt
ro

py

(a) Estimated entropy

0 2 4 6 8
2000

2200

2400

2600

2800

3000

k

L(
k)

(b) L(k)

Fig. 6. Estimated entropy and likelihood and for quantized bits of one dataset.

where PML(k) is the kth order maximum likelihood

logPML(k) =
∑

sk+1
1 ∈S(k+1) N

(
sk+1
1

)
log p̂(sk+1

1 | sk1) where

p̂(sk+1
1 | sk1) is the empirical conditional probability of string

sk+1
1 given sk1 . We find from experiments that the order of our

quantized bits is always between 1 and 10. Thus we can solve
(2) by enumerating L(k) at all points and pick the optimal k.
In situation where the order is beyond this range, we can also
use iterated grid search as in Section VI.

B. Entropy estimation

The entropy of quantized bits is the upper bound of the
number of extracted bits [25] and is used in calculating leaked
information during reconciliation. We need to estimate the
entropy. By definition, for kth order Markov chain, its entropy
rate is H = −∑

i∈S(k) π(i)
∑

j∈S(k) p(i, j) log p(i, j) where

π(·) is the stationary distribution and p(i, j) is the transition
probability from state i to j. We will show that the estimated
order (by BIC) is appropriate for computing entropy.

In theory, for estimating the entropy, we may assume any
finitely large order that is higher than the actual order. This
is because, any kth order Markov chain is a special case of
the mth order Markov chain for m ≥ k. Consequently, for
bits generated by a kth order Markov chain, any mth order
(m ≥ k) Markov chain gives the correct entropy estimation.

However, this result holds only in scenarios where there
are infinitely many samples, which may not be satisfied in
practice. One solution is to repeatedly increase the order by
one and find where the estimated entropy converges. Following
this idea, for the same quantized bits as in Figure 5, we show in
Figure 6(a) its entropy computed by assuming different orders.
The entropy is roughly the same around k = 2, 3, 4. The
concave part (k > 4) is caused by sample size limitation.
On the other hand, the objective L (of BIC estimator) in
Figure 6(b) gives the same conclusion. The conclusion also
coincides with Figure 5. Thus, we are confident about the order
estimated by BIC estimator.

C. Randomness extractor

We consider extracting perfect random bits from the depen-
dent quantized bits. It is not safe to simply perform random
hashing based on our estimated entropy, which is Shannon
entropy, because random hashing should be based on min-
entropy [26]. For extracting perfect random bits from Markov
chain, there is a simple and elegant method [27]. However, its
efficiency is low and cannot be improved to approach Shannon
entropy. Thus we turn to an earlier approach [25], which

is more complex but the efficiency can approach Shannon
entropy. The following shows how to extract perfect random
bits from a weak random source.

The randomness extractor consists of two steps. First,
the bits are split into subsequences as follows. Suppose the
Markov chain generating the bits has order k. Then the
number of resulting subsequences is 2k, with each subsequence
corresponding to a distinct Markov state. A bit belongs to the
subsequence corresponding to the bit’s previous Markov state,
the state determined by the bit’s previous k bits. This splitting
process can be done by scanning the bits from left to right.
Figure 7 gives an example of splitting a sequence generated
by a 2nd order Markov chain into 22 = 4 subsequences, S00,
S01, S10 and S11. A dash box starts from the leftmost two
bits and slides toward the right side one bit per step. In each
step, the two bits inside the dash box shows one of the four
subsequences, indicating the right-hand bit outside the dash
box belong to that subsequence. This procedure repeats until
the dash box reach the end of the sequence. It can be proved
that each resulting subsequence of the splitting procedure
contains independent bits, thus eliminating dependency.

Fig. 7. Independent subsequence splitting. For instance, bits 11 in the dash
box indicates that the current state is 11 so that the next bit, 0, belongs to the
subsequence S11.

Second, we extract unbiased bits from each subsequence.
A bit is biased if the probability of it being 1 is not equal to the
probability of it being 0. Biased bits create patterns that can
be exploited by the adversary. Without loss of generality, we
assume that the bits are biased. Given a fixed length N of bits,
let the number of 1s be k. Since these bits are independent, all
the

(
N
k

)
possible cases happen with equal probability. Thus,

we can encode each of these
(
N
k

)
cases with log

(
N
k

)
bits on

average. N is a direct factor influencing the efficiency. This
encoding process is implemented by an encoding table that
maps every N biased bits to a variable length code. The table
can be constructed off-line. Though there are many tables for
a given N , it does not matter which table is used as long as
Alice and Bob use the same table.

Algorithm 1 illustrates the randomness extractor. We first
estimate the order of the Markov model, then split the input
into independent subsequences. The last step is to extract
unbiased bits from each subsequence and append them togeth-
er(Lines 5-9). Note that the output length is a random variable,
since the code lengths are different for some inputs.

The efficiency of this randomness extractor is defined as
the expected number of extracted unbiased bits over the total

Algorithm 1: Randomness extractor

Input: q bits, the quantized bits after information
reconciliation at Alice (Bob); code table the
encoding table; N , the block size

Output: bits, random bits
1 begin
2 let k̂ be the optimal solution to objective (2);

3 seqs←− split q bits into 2k̂ different
subsequences;

4 bits←− ∅;
5 foreach seq ∈ seqs do
6 blocks←−divide seq into blocks with each

containing N bits;
7 foreach block ∈ blocks do
8 code←− code table(block);
9 append code to bits;

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

Δ N
 (

p)

↑
N=20

↑
N=15

← N=5

(a) Efficiency gap

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

Δ
20

(p)

of

 o
cc

ur
en

ce
s

(b) Histogram for Δ20(p)

Fig. 8. Efficiency of the extractor. For each p=0.01,0.02,. . .,0.99, we simulate
4000 independent random bits. We extract random bits with Algorithm 1.
When N approaches infinity, the efficiency gap approaches zero.

number of biased bits. It describes how much randomness is
extracted. Its upper bound is the Shannon entropy denoted by
H(·). Let p be the probability of a bit being 1 and ηN (p) be the
efficiency. We have limN→∞ ηN (p) = H(p) where H(p) is
the Shannon entropy. In practice, we are also interested in the
gap between finite N and infinity. Denote the gap by ΔN (p) =
H(p)− ηN (p). We simulate the gap as shown in Figure 8(a).
It decreases with the increase of N . Our implementation uses
N = 20, whose histogram is in Figure 8(b). For simplicity,
we refer to Δ20(p) as Δ.

D. Discussion

One concern of our Markov model is how well it approxi-
mates the ground truth. However, the ground truth is unknown.
To prove its validity, we have observed the finite dependency
property and provide other empirical evidence.

First, each subsequence produced by the first step of our
randomness extractor should contain independent bits, thus the
bits should be uncorrelated. This is confirmed by Figure 9,
which plots the autocorrelation of one subsequence from our
experiments. Second, the empirical efficiency of our random-
ness extractor should be consistent for both simulated data
and real trace. We compute Δ for one dataset under different
parameter settings (α,m, s) according to Δ =

abps−sbps
qbps

. (This

can be derived by noting that ne = (E−Δ)nq .) Figure 10 plots
the histogram, which coincides with the result from simulation

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e

au
to

co
rr

el
at

io
n

Fig. 9. Autocorrelation of a subse-
quence. Bits are uncorrelated within
95% confidence interval.

0 0.1 0.2 0.3 0.4
0

500

1000

1500

2000

2500

Δ

of

 o
cc

ur
re

nc
es

Fig. 10. Empirical efficiency gap.
Each occurrence is for a different
α,m, s.

in Figure 8(b). Third and most importantly, the resulting bits
of the randomness extractor should be able to pass the NIST
test. As shown in our experiments, all of our extracted bits
pass the test. (Without our extractor, none of them can pass
the test.)

VI. ONLINE PARAMETER LEARNING

Recall that three parameters should be determined in level
crossing. Our experiments show that the excursion threshold
m can be set to 2 and the sliding window size s can be the
number of samples in 2 seconds. In this section we aim to find
a suitable quantization threshold α in an online fashion.

In the online scheme, suppose Alice is the leader. For a
training period, Bob sends his residual readings to Alice. Alice
simulates the key generation process on her own readings and
Bob’s readings with different α. Then she picks, and sends to
Bob, the α that optimizes the resulting bit rate. After training
period, both sides will use this α for key generation. But how
to optimize α and which training period should be used?

A. Choosing α

Our ultimate goal is to maximize abps. One natural solution
is to try several α, and compare the resulting abps. Due to the
intermediate steps, such as entropy estimation and randomness
extraction, this method is computationally intensive. Instead,
we give the following metric fτ as a qualitative approximation
of abps. For a given α, the leader (Alice or Bob) simulates
level crossing with α, obtaining the corresponding quantized
bit rate qbps and its mismatch rate γmis. The metric fτ maps
each (qbps, γmis) pair directly to a scalar:

fτ (qbps, γmis) =

{
qbps · (1− γmis/τ) if γmis < τ

0 otherwise

where τ is a scaling parameter. This metric can be computed
quickly for a certain α without performing entropy estimation
and information reconciliation. We design f from empirical
study. The intuition is as follows. On one hand, if the mismatch
rate of quantized bits is above τ , then all the bits will be
exposed during information reconciliation, resulting in zero
abps. On the other hand, if the mismatch rate is zero, then
we can use all the quantized bits. For any mismatch rate in-
between, linear interpolation is performed. The parameter τ
is closely related to information reconciliation. We find that
τ = 0.20 performs well in our settings. Figure 11 shows the
two metrics f0.2 and abps with respect to different α. The
optimal α based on fτ is very close to that based on abps.

Algorithm 2: Iterated grid search

Input: data, residual readings for Alice and Bob;
(low, high) low and high bounds on α; nt, the
number of iterations

Output: α, the optimal value that maximizes f
1 begin
2 [x0, x2, x4]←− [low, (low + high)/2, high];
3 [y0, y2, y4]←− [f(x0), f(x2), f(x4)];
4 ite←− 1;
5 while ite ≤ nt do
6 [x1, x3]←− [(x0 + x2)/2, (x2 + x4)/2];
7 [y1, y3]←− [f(x1), f(x3)];
8 Find i such that yi = max{y0, y1, . . . , y4};
9 [x0, x2, x4]←− [xi−1, xi, xi+1];

10 [y0, y2, y4]←− [yi−1, yi, yi+1];
11 ite←− ite+ 1;

12 α←− x2;

Observe that f is approximately unimodal, which can be
used to expedite search. To avoid exhaustive search, we employ
an iterated grid search algorithm that is based on a three-point
scheme [28], as described in Algorithm 2. It compares three
points in each iteration and chooses the best one, and then
reduces the search range by 2/5.

The number of fτ evaluations is 3+ 2 ·nt where nt is the
number of iterations. The optimal α resides within a range of
0.6ntL where L is the length of the search range, thus the error
bound is 0.6nt

2 L. In experiments, we set α ∈ [0, 2] and nt = 6,
giving error less than 0.05. The algorithm incurs 15 function
evaluations, which is significantly less than exhaustive search.

B. Training period

Choosing different training periods may give quite different
performance. We consider two schemes in this subsection. The
first is a naive scheme called single-frame scheme. Time is
divided into frames, each of which has length f , in units of
the number of readings. In each frame, the leader uses the first
f · γr (γr < 1) readings for training, and obtains the best α.
Then applies it to the remaining readings of the frame. This
scheme does not work well— we cannot find proper γr and f
to give reasonable abps, which is presented in the experiment
section. The reason is that the channel condition is not stable.
Thus, the optimal α selected by the training period may not
work well in the remaining period.

We then propose a double-frame scheme. We have an α
for each frame and choose the bigger of the two. Because
the metric fτ is not symmetric with respect to the optimal
α, underestimation and overestimation have different impacts.
Specifically, overestimation hurts less than underestimation.
For a given distance to the peak, underestimation reduces abps
more significantly. To achieve overestimation, we can raise α
but also we can lower the threshold τ , even though it may not
reflect abps well. Figure 11 shows the f with τ = 0.12. It does
not fit as well as τ = 0.20, but its peak is still close.

To incorporate the CCA component, we add the weights
estimation part before training α. After estimation, Alice will
send the weights together with the α to Bob. They will use

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

←f with τ=0.20

←f with τ=0.12

↑
a

bps

α

bp
s

Fig. 11. f and abps with respect to
α on one dataset.

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

γ
mis

a bp
s

Fig. 12. Approximate bit rate abps
and its mismatch rate γmis.

the bigger α and the corresponding weights in the remaining
period for generating bits. We name this procedure “double-
frame scheme with CCA incorporated”.

The message exchanging mentioned above does not com-
promise the security level. First, it is almost impossible to
predict the fluctuation of the residual readings from exposed
historical data segments nearby because of the short coherence
time. Thus, the adversary cannot learn more about the final
secret bits generated from unrevealed residual data segments.
Second, disclosed parameters after training only reflect the
statistics of the noise. This information may indicate the secret
bit rate of our scheme in a short time period, but this is fine
since the secret bit rate is publicly known.

VII. EXPERIMENT

We evaluate the proposed methods based on measurements
from real vehicular networks. To collect the measurements, the
two cars, Alice and Bob, drive one after the other in the same
direction on the same route at the same time. Both of them
are carrying laptops running Ubuntu 9.10 with Atheros WiFi
chipsets and external antennas mounted on top of the cars.
While driving Alice keeps sending probes, which only have a
preamble and an index payload, to Bob, and Bob immediately
returns back corresponding replies upon reception. Both sides
record, as datasets, the RSSI readings of received packets
along with their indices. We conduct measurements for 8
runs over two different routes, generating 8 datasets. Datasets
1 ∼ 5 are from a suburban route with rate of 500 probes
per second, while datasets 6 ∼ 8 are from a rural route
with 1000 probes per second. The two routes are shown in
Figure 13. It is worth mentioning that these probing rates are
for the establishment of the secret key, which takes only a
few seconds. In the following, we first show how to optimize
some system parameters, and then apply them into our online
procedure to show how fast we can extract bits. Finally we
validate the randomness of the final bits by the NIST test suite.

A. Parameters optimization

We take abps as the metric for the system parameter
optimization. As shown in Figure 12, maximizing abps does
not necessarily increase mismatch rate, thus it is safe to
optimize abps without concern of the mismatch rate. This
single metric not only simplifies the optimization procedure,
but also inspires our design of online objective function f .

Picking m and s Figure 14 shows abps with respect to
three parameters for one dataset. According to the figure, we

Fig. 13. Routes for data collection: suburban route (left), and rural route
(right). (GoogleEarth)

0 500 1000 1500
0

0.5

1

s

α

m=2

0 500 1000 1500
0

0.5

1

s

α

m=3

0 500 1000 1500
0

0.5

1

s

α

m=4

0 500 1000 1500
0

0.5

1

s

α

m=5

0

1

2

3

4

5

Fig. 14. Influence of three parameters. Objective abps is represented by
color. We choose m = 2 and s as 2-second readings.

choose excursion threshold m = 2 because of consistently
better performance. The sliding window size s does not
influence abps much, especially after s = 1000. Thus we set it
to be 2 seconds long because the probing rate of this dataset
is 500 per second. However, abps changes rapidly with respect
to α, so we do not fix it here and leave it to be optimized.

Data smoothing We smooth the data to reduce noise,
which should not be confused with the sliding window s-
moothing in level crossing to subtract slow variation. We
implement three techniques: (1) k-reading average; (2) sliding
window smoothing; (3) CCA-based smoothing. Figure 15
shows the result. k-reading average hurts the performance.
Sliding window smoothing and CCA-based smoothing can
improve the performance before k=3. For k>3, performance is
worse because some information is smoothed out. CCA-based
smoothing outperforms sliding window smoothing consistent-
ly. To study why CCA smoothing performs the best, we look
into its weights at k = 3 and find that a =(0.40,0.36,0.24),
b =(0.23, 0.36, 0.41). Note that a and b are nearly the inverse
of each other, which can compensate for mismatched sensing
time. Thus, the benefit of CCA comes from both smoothed
local noise and adjusted sensing time. Consequently, it can
generate 50% more entropy bits compared to raw readings.

Online scheme There are two parameters for online s-
tudy: training ratio γr and frame length f . We compute
for γr = 0.10, 0.12, . . . , 0.60 and f = 1, 2, . . . , 20 (e.g.,
f = 1 means 1 second readings). Figure 16(a) shows that
single-frame scheme does not have a generalizable parameter
setting. The double-frame scheme improves it significantly

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

k

a bp
s

k−reading
sliding window
CCA

Fig. 15. Smoothing techniques. When k = 1, no smoothing is performed.
We choose CCA with k = 3.

(Figure 16(b)). Therefore, overestimation indeed hurts less
than underestimation. In sight of this, we set τ = 0.12
which gives higher α than τ = 0.20, and the result is in
Figure 16(c). We can further improve it via the double-frame
technique (Figure 16(d)). Observe that γr = 0.10 ∼ 0.16
and f = 10 ∼ 20 perform equally well. Therefore, we set
γr = 0.10 and f = 10.

0 10 20 30 40
0.1

0.2

0.3

0.4

0.5

0.6

frame

ra
tio

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) single-frame with τ = 0.20

0 10 20 30 40
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

frame

ra
tio

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) double-frame with τ = 0.20

0 10 20 30 40
0.1

0.2

0.3

0.4

0.5

0.6

frame

ra
tio

0

0.5

1

1.5

2

2.5

3

3.5

4

(c) single-frame with τ = 0.12

0 10 20 30 40
0.1

0.2

0.3

0.4

0.5

0.6

frame
ra

tio
0

1

2

3

4

(d) double-frame with τ = 0.12

Fig. 16. abps vs. ratio (γr) and frame (f). The value of abps is represented

by color. We choose double-frame scheme with τ = 0.12, f = 10, γr = 0.1.

B. Experimental results

We compute the entropy bit rate for all datasets. We use
two schemes, an offline scheme and an online scheme. For the
offline scheme, the weights for CCA are picked offline, and
α is chosen via Algorithm 2. For the online scheme, we use
the double-frame scheme with CCA incorporated, the weights
of CCA and α are learned online. Table I shows the results.
First, there is no obvious correlation between driving speed
and abps. The trace contains sufficient variations. The main
factor limiting abps is the noise contained in the readings.
Second, the offline scheme can get 6-9 entropy bits per second
for datasets 1-6, while it performs poor on datasets 7 and
8. The online scheme offers more consistent performance.
It can get 4-9 entropy bits per second for all datasets. This
is because, the offline scheme uses a single α and there is
always some bad portion of readings in some datasets that
cause many mismatches. On the other hand, the online scheme,
discards some data for training, adaptively adjusts parameters
and achieves better performance. Thus, the online scheme

TABLE I. EXPERIMENT RESULTS. CAR SPEED IS IN MPH.

Data Offline Online
no. speed abps sbps γmis abps sbps γmis

1 25 7.56 3.98 0.0000 5.45 3.28 0.0000

2 35 6.46 2.97 0.0000 4.53 2.66 0.0010

3 35 7.95 4.54 0.0011 5.63 3.33 0.0000

4 45 9.23 4.96 0.0000 5.62 3.42 0.0000

5 45 7.78 4.31 0.0000 5.16 2.92 0.0000

6 35 7.81 0.00 0.0004 8.86 3.90 0.0000

7 45 1.11 0.00 0.0000 4.40 1.74 0.0000

8 50 3.34 0.00 0.0000 5.08 1.75 0.0000

offers more consistent performance in different environments.
Third, sbps is smaller than abps. This is caused by the efficiency
of the randomness extractor. Our current implementation uses
N = 20 in the extractor. In principle, we can get sbps
arbitrarily close to abps by increasing N in the extractor.
But there are computational challenges, so we reserve this for
future work. For the three cases where sbps = 0, this is caused
by efficiency: sbps > 0⇐⇒ η >

np

nq
E.

C. Proof of security

In vehicular environments, the adversary, Eve, is at least
a few meters away from both Alice and Bob. Due to the
nature of wireless fading, Eve cannot get any information
about the dynamics experienced by Alice and Bob, which
has been verified [5], [8], [15]. In addition, the information
exposed by information reconciliation has been removed by
privacy amplification. Thus, the only security concern left is
whether the extracted bits are sufficiently random. To validate
randomness, for each sbps in Table I, we perform the NIST
tests on the extracted bits. Note that even for the traces where
sbps = 0, we obtain extracted bits. The zero bit rate is caused
by subtraction of leaked information. Among the 15 tests in
the NIST tool, we run 8 tests and find that the extracted bits
can pass these tests. The other tests require large input size,
and we plan to run them in the future.

VIII. CONCLUSION

In this work, we consider the secret key extraction problem
in vehicular networks. Our solution improves on an existing
level crossing technique to work in a noisy vehicular envi-
ronment. Measurements from real world vehicular networks
show that we can extract 6-9 bits per second in most traces,
and adjusting parameters in real-time can help tolerate noise
in different environments and offer steady performance.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for
their helpful comments. This project was supported in part
by US National Science Foundation grants CNS-1117412,
CAREER Award CNS-0747108, CNS-1156574, China NS-
F grants (61073152, 61133006) and China 973 project
(2012CB316200).

REFERENCES

[1] W. Viriyasitavat, F. Bai, and O. K. Tonguz, “Dynamics of network
connectivity in urban vehicular networks,” IEEE Journal on Selected
Areas in Communications, 2011.

[2] J. J. Haas, Y.-C. Hu, and K. P. Laberteaux, “The impact of key
assignment on vanet privacy.” Security and Communication Networks,
2010.

[3] I. Rouf, R. D. Miller, H. A. Mustafa, T. Taylor, S. Oh, W. Xu,
M. Gruteser, W. Trappe, and I. Seskar, “Security and privacy vulnera-
bilities of in-car wireless networks: A tire pressure monitoring system
case study.” in USENIX Security Symposium’10.

[4] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J. Freudiger,
M. Raya, Z. Ma, F. Kargl, A. Kung, and J.-P. Hubaux, “Secure vehicular
communication systems: design and architecture,” IEEE Communica-
tions Magazine, 2008.

[5] S. Mathur, W. Trappe, N. Mandayam, C. Ye, and A. Reznik, “Radio-
telepathy: extracting a secret key from an unauthenticated wireless
channel,” in MobiCom ’08.

[6] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam,
“Information-theoretically secret key generation for fading wireless
channels,” IEEE Trans on Information Forensics and Security, 2010.

[7] S. Jana, S. N. Premnath, M. Clark, S. K. Kasera, N. Patwari, and
S. V. Krishnamurthy, “On the effectiveness of secret key extraction
from wireless signal strength in real environments,” in MobiCom ’09.

[8] N. Patwari, J. Croft, S. Jana, and S. K. Kasera, “High-rate uncorrelated
bit extraction for shared secret key generation from channel measure-
ments,” IEEE Trans on Mobile Computing, 2010.

[9] L. Cheng, B. E. Henty, F. Bai, and D. D. Stancil, “Doppler spread and
coherence time of rural and highway vehicle-to-vehicle channels at 5.9
ghz,” in GLOBECOM’08.

[10] J. Camp and E. Knightly, “Modulation rate adaptation in urban and
vehicular environments: cross-layer implementation and experimental
evaluation,” in MobiCom ’08.

[11] NIST, “A statistical test suite for random and pseudorandom number
generators for cryptographic applications,” 2001.

[12] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and B. Yener, “Robust key
generation from signal envelopes in wireless networks,” in CCS’07.

[13] H. Liu, J. Yang, Y. Wang, and Y. Chen, “Collaborative secret key extrac-
tion leveraging received signal strength in mobile wireless networks,”
in INFOCOM’12.

[14] F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li, “Imdguard: Securing
implantable medical devices with the external wearable guardian,” in
INFOCOM’11.

[15] M. Wilhelm, I. Martinovic, and J. B. Schmitt, “Secret keys from
entangled sensor motes: implementation and analysis,” in WiSec ’10.

[16] Z. Yang, A. C. Champion, B. Gu, X. Bai, and D. Xuan, “Link-layer
protection in 802.11i wlans with dummy authentication,” in WiSec’09.

[17] H. Wang, B. Sheng, and Q. Li, “Privacy-aware routing in sensor
networks,” Elsevier Computer Networks, 2009.

[18] H. Wang, B. Sheng, C. Tan, and Q. Li, “Wm-ecc: An elliptic curve
cryptography suite on sensor motes,” College of William and Mary,
Computer Science, Williamsburg, VA, Tech. Rep. WM-CS-2007-11,
2007.

[19] F. Liu, X. Cheng, L. Ma, and K. Xing, “Sbk: a self-configuring frame-
work for bootstrapping keys in sensor networks,” IEEE Transactions on
Mobile Computing, 2008.

[20] G. Brassard and L. Salvail, “Secret-key reconciliation by public discus-
sion,” in EUROCRYPT ’93.

[21] C. H. Bennett, G. Brassard, and J.-M. Robert, “Privacy amplification
by public discussion,” SIAM J. Comput., 1988.

[22] D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor, “Canonical
correlation analysis: An overview with application to learning methods,”
Neural Comput., 2004.

[23] A. V. Prokhorov, “Paritial correlation coefficient,” Encylcopaedia of
Mathematics, 2001.

[24] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, 1978.

[25] P. Elias, “The efficient construction of an unbiased random sequence,”
The Annals of Mathematical Statistics, 1972.

[26] R. Shaltiel, “Recent developments in explicit constructions of extrac-
tors,” Bulletin of the EATCS, 2002.

[27] M. Blum, “Independent unbiased coin flips from a correlated biased
source: a finite state markov chain,” Combinatorica, 1986.

[28] J. Kim, “Iterated grid search algorithm on unimodal criteria,” Ph.D.
dissertation, 1997.

