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Abstract: Distance estimation is a crucial component in localisation for wireless sensor 
networks. Among the estimation methods, hop-count is widely used in situations where only 
connectivity information is available. However, hop-count is integer-valued, implying crude 
distance estimation. In this paper, we refine hop-count to achieve better distance estimation. This 
is done by estimating neighbour distance and then approximating non-neighbour distance by the 
length of the shortest path. To estimate neighbour distance, we propose three estimators and show 
that they have negligible bias. We also show that the variance of the estimators is related to node 
density. The final refined hop-counts are further studied by simulations. Results verify the 
improvement on distance estimation and show that existing localisation methods can benefit from 
the improvement in various scenarios. 
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1 Introduction 

Localisation is a fundamental issue in wireless sensor 
networks and attracts much research effort (Hightower and 
Borriello, 2001; Liu et al., 2010). Most localisation methods 
take distance information as input. Based on the granularity 
of the distance information, we can classify existing 
localisation methods into two categories: range-based and 
range-free. Range-based methods rely on accurate distance 
measurement, e.g. TDOA (Priyantha et al., 2000). Though 
they can achieve high accuracy, the requirements on extra 
hardware or intensive labour work make them only 

applicable to small scale networks. On the other hand, 
range-free methods do not rely on precise distance 
measurements, and they use hop-count as the distance 
measurement, (e.g. Niculescu and Nath, 2003). Here hop-
count is defined as the least number of hops between two 
nodes; therefore, it can be computed from connectivity 
information. 

However, hop-count is integer-valued in nature, so it 
suffers from coarse-grained accuracy. To achieve better 
accuracy, researchers seek approaches to provide sub-hop 
resolution (Zhong and He, 2009; Xi et al., 2010). Among 
them, RSD (Zhong and He, 2009) uses RSSI information to 
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identify the relative near-far relationship between neighbours, 
and Virtual-hop (Xi et al., 2010) exploits neighbour 
distribution to refine hop-count. Both are heuristic in nature. 
Though they work well in the proposed scenarios, it is 
unclear how the network model can influence their solutions. 
Instead, we seek non-heuristic solutions to the same problem. 

In this work, we refine hop-count by mere connectivity 
information. This is done by relating the geometry of radio 
coverage to the number of nodes within a certain area. 
Specifically, we consider to use the number of common 
neighbours to infer the distance between two neighbouring 
nodes. For this purpose, we propose three estimators, and 
show the associated bias and variance by numerical analysis. 
Since the estimators are only suitable for neighbours, we 
extend it to the non-neighbour scenario by using the shortest 
path distance to approximate non-neighbours’ distance. 
Consequently, there are three resulting refined-hop-counts. 
They can be incorporated to both distributed and centralised 
localisation algorithms that are based on connectivity 
information. Numerical simulations confirm the improvement 
over traditional hop-count. We also apply our proposed 
method to other two scenarios, namely irregular radio 
coverage scenario and anisotropic node distribution scenario. 
Results indicate that our method is also effective in these two 
scenarios. 

The rest of the paper is organised as follows. Section 2 
reviews related works. Section 3 formulates the problem. We 
show the outline of our approach in Section 4. The detailed 
neighbour distance estimation methods are presented in  
Section 5 and numerically studied in Section 6. Section 7 
evaluates our solutions and Section 8 concludes the paper. 

2 Related works 

In the following, we first review the range-free methods, 
and then review works devoting to sub-hop resolution. 

Range-free methods require only connectivity information 
and are cost-effective alternatives to locate large-scale sensor 
networks (Niculescu and Nath, 2003; Shang et al., 2003; 
Biswas et al., 2006; Giorgetti et al., 2007; Wang et al., 2011). 
DV-hop (Niculescu and Nath, 2003) is a representative work. 
In DV-hop, each node computes the hop-count distance to each 
beacon. Each beacon floods a distance-per-hop message to the 
network, so that each unknown node can calculate the absolute 
distance to beacons and then be localised. Another set of range-
free methods uses optimisation-based techniques. Examples 
include SDP (Biswas et al., 2006), MDS-MAP (Shang et al., 
2003), SISR (Kung et al., 2009), SOM (Giorgetti et al., 2007) 
etc. They can use both connectivity information and range 
measurements. By considering anisotropic node distribution, 
the work of Lim and Hou (2005) finds a linear mapping that 
transforms proximity measurements between sensors to 
geographic distances. These works are orthogonal to ours and 
can incorporate our refined hop-count by using it as the hop-
count or proximity measurement. Another interesting topic is 
to provide analytical error bound for a localisation method 
given only connectivity information. The results for DV-Hop 

and MDS-MAP have been reported by Karbasi and Oh (2010) 
and Oh et al. (2010), respectively. 

Since hop-count is integer-valued, its performance can be 
improved if we use more information. Amorphous (Nagpal, 
1999; Bachrach et al., 2004) is the earliest to provide sub-hop 
resolution for hop-count. It adjusts hop-count by averaging 
over all neighbours hop-counts minus 0.5. However, the 
derivation is based on one-dimensional networks. The work 
of Ma et al. (2009) calculates the node-to-anchor distance by 
considering the hop distribution of a node’s neighbours. RSD 
(Zhong and He, 2009) proposes regulated signature distance 
to measure the distance between neighbouring nodes, which 
is based the observation that from a node’s point of view, a 
larger RSSI indicates a shorter distance. Similar observations 
have also been used to infer the relative locations of sensors 
deployed along a line (Zhu and Chen, 2011). Virtual-hop, a 
sub-system in CDL (Xi et al., 2010), relies on the following 
heuristic rule: a node nearer to the beacon is likely to have 
more previous-hop neighbours and less next-hop neighbours. 
In this work, we analytically refine hop-count based on radio 
coverage and node distribution. 

The closest works to ours are the geometric distance 
estimation methods (Kroller et al., 2006; Aslam et al., 2009). 
Assuming that the number of nodes in any disk follows 
uniform distribution, the work of Kroller et al. (2006) 
expressed the distance between neighbours in terms of  
the fraction of their common neighbours, i.e. 
| ( ) ( ) | / | \{ } |iN i N j N jÇ  where N(i) is the set of node i’s 

neighbours. Arguing that | ( ) ( ) |N i N jÈ  is more reliable than 

| ( ) ( ) |N i N jÇ , the work of Kroller et al. (2006) improved the 

estimation to be in terms of | ( ) ( ) | / | ( ) ( ) |N i N j N i N jÇ È . 

Interestingly, with a little difference in the exact expression and 
approximation, these two works are basically the same as our 
first and second estimators given in Section 5, respectively. 
However, we differ in three aspects. First, we assume that 
nodes are uniformly distributed in the whole network field, 
which results in Poisson distribution of the number of nodes in 
a certain area, while the previous works assumed uniform 
distribution of the number of nodes in any certain area. 
Consequently, variance analysis is different. Second, our 
derivation naturally leads to the third estimator in Section 5, 
which gives more stable performance improvement under 
various scenarios. Third, bedsides the quality of distance 
estimation, we also studied the distance estimators in the 
context of localisation. 

3 Problem formulation 

We model the network as an undirected graph G = (V, E) 
where V is the set of nodes and E is the set of 
communication links. There is a link between two nodes if 
and only if their distance is less than or equal to a fixed 
distance r, named transmission range. This assumption is 
named circular transmission range assumption, which is 
common in all connectivity-based schemes, e.g. recently in 
the Tan et al.’s (2010) study. We assume sensor nodes are 
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uniformly deployed in a field with density . For node i, 
denote N(i) as the set of its neighbours. With a little abuse 
of notation, let ( )i N i . We assume each node knows its 

neighbours by some neighbour discover scheme such as the 
one proposed by You et al. (2012). Given two nodes i and j, 
the hop-count distance h(i, j) is defined as the least number 
of nodes that a message from node i must encounter before 
arrival at node j. Note that h(i, j) = h(j, i). Let d(i, j) be the 
physical distance between nodes i and j. 

The above model is widely used in range-free localisation 
works (e.g. Niculescu and Nath, 2003; Lotker et al., 2004), and 
the hop-count is used to approximate the physical distance. To 
show how hop-count performs, we generate a network with 
400 nodes uniformly deployed in a 10  10 square with r as the 
unit length. For each pair of nodes, we plot their hop-count 
with respect to their physical distance in Figure 1. It is evident 
that hop-count is discrete and each hop-count may correspond 
to a wide range of distances. Therefore, hop-count can only 
provide a crude estimation of distance. Our target in this paper 
is to design a new distance metric to replace hop-count such 
that the resulting plot has better correspondence to physical 
distance. 

Figure 1 Hop-count vs physical distance. Four hundred nodes 
are deployed in a 10  10 square with r = 1 (see online 
version for colours) 

 

Table 1 Terminologies 

Symbol  Definitions 

n Number of sensor nodes 

 The number of nodes per unit square. 

r Transmission range 

 Average neighbourhood size, 2= r   

d(i, j) Physical distance between nodes i and j 

h(i, j) The hop-count distance from i to j 

( , )l i j  Temporary hop-count distance from i to j, 
only defined for neighbours 

l(i, j) refined hop-count distance from i to j 

N(i) Neighbour set of node i. Note ( )i N i . 

Note that there are idealised assumptions in the model 
including uniform node distribution and circular radio 
coverage. These assumptions make theoretical derivation 

tractable and the results under these assumptions can 
provide insights into the distance estimation for sensor 
nodes. In the evaluation section, we also consider situations 
with non-uniform node distribution and radio irregularity. 

4 Outline of our approach 

In this section, we present the basic idea about our design of 
refined hop-count l. To compute this refined hop-count, nodes 
exchange neighbour information with their neighbours and 
compute distances to neighbours. If two nodes are not 
neighbours but their distance is required, one of them floods a 
message to the network, and the other node computes the 
shortest path distance. We first introduce distance estimation 
for neighbouring nodes, and then extend the initial estimation 
to all node pairs. 

4.1 Initial distance estimation 

In this subsection, we focus on neighbouring nodes and 

provide initial distance estimation ( , )l i j  between two 

neighbouring nodes i and j. We first relate the physical 
distance to area of two circular caps, and then relate the area 
to the number of nodes. 

Consider a pair of neighbours i and j. Their radio 
coverage can be illustrated in Figure 2. In Figure 2, 

( , ) =d i j x r  and A denotes the intersected radio coverage 

area. Ideally, the result we want is l(i, j) = x. Therefore, we 
need to estimate x. Our basic idea is to relate x to the 
geometry area of A, which is proportional to the number of 
nodes within A. 

Figure 2 Radio coverage for nodes i and j. A is the common 
radio coverage area (see online version for colours) 

 

For area A, it can be divided by the dashed line into two halves. 
We show a half in Figure 3. According to basic geometry, we 

have 2sin 2
=

2
S r

  
 

. Note that = arccos  , = 2x   

and A = 2S, so we get 
2

2= 2 arccos 1 .
2 2 4

x x x
A r

 
  
 
 

 Let B 

be the union of radio coverage area of nodes i and j. We have 
2= 2B r A  . Now we have finished the geometry part of the 

derivation. 
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Figure 3 A circular cap (see online version for colours) 

 

On the other hand, consider the nodes in area A, denote them  
as N(A). Under our uniform assumption, | ( ) |N A  follows a 

Poisson distribution with expectation A. Similarly, | ( ) |N B  

follows a Poisson distribution with expectation B. In 
summary, we have the following information:  

2
2= 2 arccos 1 ,

2 2 4

x x x
A r

 
  
 
 

 

2= 2 ,B r A   

| ( ) | ( ),N A Pois A  

| ( ) | ( ),N B Pois B  

where ( )a Pois   means a follows Poisson distribution 

with parameter . 
Our target is to estimate x based on N(i) and N(j). These 

two sets can be obtained in a local manner by broadcasting 
each node’s neighbour list, which does not incur much 
overhead. Given N(i) and N(j), we can compute 
| ( ) |=| ( ) ( ) |N A N i N jÇ , or | ( ) |=| ( ) ( ) |N B N i N jÈ , or even 

| ( \ ) |=| ( ) | | ( ) |N B A N B N A . It should be noted that 

| ( ) |N A  and | ( ) |N B  are not mutually independent due to 

the fact that area A belongs to area B. To estimate x, we can 
use heuristic idea, or apply rules from estimation literature. 
We will design three estimators in Section 5. Currently, 

suppose we have designed an estimator l . However, the 
obvious limitation is that it is defined only for neighbours. 
We then extend it to non-neighbours. 

4.2 Shortest path distance as refined hop-count 

For non-neighbours, we can estimate their distance by the 
shortest path distance between them, which completes our 

refined hop-count. Specifically, after obtaining ( , )l i j , we 

construct a graph = ( , , )G V E W  with V being the set of 

nodes, E being the set of links, and :W E R  being the 

initial distance estimation as ( , ) = ( , )for( , )W i j l i j i j E . 

The refined hop-count l for any two nodes i and j is then the 
shortest path distance between nodes i and j in graph G . 

Here are some remarks on ( , )l i j . First, it may not be 

equal to ( , )l i j  even if ( , )i j E . This is possible when 

there exists node k such that ( , ) ( , ) < ( , )l i k l k j l i j    due to 

the probabilistic nature of node distribution. In this case,  

it is beneficial to use the shortest distance rather than  

the original ( , )l i j , because the estimation between closer 

nodes is more reliable. Second, it is not necessary to 
compute l for all pairs. Usually, only the distances between 
unknown nodes and a beacon node are required (e.g. in DV-
Hop; Niculescu and Nath, 2003). In this case, the distance 
can be computed by a DV-like flooding from the beacon 
node. Therefore, it incurs negligible overhead. 

5 Neighbour distance estimators 

We have shown the outline of our approach. In this section, 
we focus on deriving the distance between neighbours.  
We will propose three estimators, based on different 
formulations. 

There is a basic function that we will use frequently, i.e. 
2

arccos 1
2 2 4

x x x
  . We approximate it by a linear 

function of x. 

Lemma 1: Let 
2

( ) = arccos 1
2 2 4

x x x
f x    and 

( ) = / 2g x x  . For all 0 1x  , it holds (1) 

3
( )

3 4 2
f x

 
   ; (2) 0 ( ) ( ) < 0.044f x g x  . 

Proof: For equation (1), since 21
( ) = 4 0

2
f x x    , the 

function  f(x) is monotonically decreasing. In addition, 

(0) =
2

f


, and 
3

(1) =
3 4

f

 . 

For equation (2), let ( ) = ( ) ( )h x f x g x . Consider its 

derivative  

21
( ) = 1 4 0

2
h x x     

which shows that h(x) is an increasing function. In addition, 

h(0) = 0 and 
3

(1) = 1 < 0.044
4 6

h


  . This completes our 

proof.  
This lemma shows that the approximation is quite good. 

It makes the later derivations possible. With this notation, 
we have 2= 2 ( )A f x r . 

Let C(i) be the radio coverage area of node i. Then we 
have = ( ) ( )A C i C jÇ  and = ( ) ( )B C i C jÈ . 

5.1 The first estimator 

Consider C(i). The number of nodes within C(i) is | ( ) |N i , 

which follows Poisson distribution with expectation C(i). 
We have the following equation  

[| ( ) |]
= .

[| ( ) |] ( )

E N A A

E N i C i



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We will design an estimator based on this equation. We can 
approximate [| ( ) |]E N A  by | ( ) |N A  and [| ( ) |]E N i  by 

| ( ) |N i . In addition, 2 2= 2 ( ) 2 ( )A f x r g x r  and 2( ) =C i r . 

These lead to  

| ( ) | 2 ( )
.

| ( ) |

N A g x

N i 
  

Recall that ( ) = ( ) ( )N A N i N jÇ . Substituting ( ) = / 2g x x   

yields  

| ( ) ( ) |
1

2 | ( ) |

N i N j
x

N i

  
  

 

Ç
 

which gives our first estimator  


1

| ( ) ( ) |
( , ) = 1 .

2 | ( ) |

N i N j
l i j

N i

  
 

 

Ç
 (1) 

The intuition behind 1( , )l i j  is that the distance between i 

and j is inversely proportional to the ratio of common 
neighbours. Consider the extreme case where nodes i and j 

have the same set of neighbours, i.e. 
| ( ) ( ) |

= 1
| ( ) |

N i N j

N i

Ç
. 

Then 
1( , ) = 0l i j . It is worth mentioning that 

{ , } ( ) ( )i j N i N j Ç  since i and j are neighbouring nodes. 

There is an undesired property regarding 1( , )l i j . It may 

be asymmetry, i.e. the distance computed by i may be 
different from that computed by j, since | ( ) |N i  may not be 

equal to | ( ) |N j  due the probabilistic nature of node 

distribution. This asymmetry can be eliminated by 
computing the average, the maximum or minimum of the 
two values. In this work, we adopt the average approach. 
Though we can solve the asymmetry issue by additional 
processing, it would be better if the estimator itself could 
give symmetric estimation. This idea leads to our second 
estimator. 

5.2 The second estimator 

Consider the area A and B. Recall that  

[| ( ) |]
=

[| ( ) |]

E N A A

E N B B




 

which is the basis of the second estimator. Again, we can 
approximate [| ( ) |]E N A  by | ( ) |N A  and [| ( ) |]E N B  by 

| ( ) |N B . Substituting 2= 2B r A   and 2= 2 ( )A f x r  gives  

| ( ) |
= 1 .

| ( ) | ( )

N A

N B f x




 


 

Since ( ) = ( ) ( )N A N i N jÇ  and ( ) = ( ) ( )N B N i N jÈ , approximating 

( )f x  by ( )g x  and solving for x  lead to  

2 | ( ) ( ) |
1 .

2 | ( ) ( ) | | ( ) ( ) |

N i N j
x

N i N j N i N j

  
   

Ç
Ç È

 

Note that the term | ( ) ( ) | | ( ) ( ) |N i N j N i N jÇ È  is actually 

equal to | ( ) | | ( ) |N i N j . Our second estimator is  


2

2 | ( ) ( ) |
( , ) = 1 .

2 | ( ) | | ( ) |

N i N j
l i j

N i N j

  
  

Ç
 (2) 

This estimator has the same intuition as the first estimator: 
the distance between two nodes is inversely proportionally 
to the percentage of common neighbours. In fact, it 
generalises the first estimator. To see this, suppose 

| ( ) |=| ( ) |N i N j , then   
2 1 1( , ) = ( , ) = ( , )l i j l i j l j i . Our second 

estimator has the additional advantage that it is symmetric, 
i.e., the distance computed by i is always equal to that 
computed by j. 

The above two estimators are both easy to understand and 
simple for computation. However, they only use expectation 
information and did not use variance information. Indeed, 
variance should be considered since it is widely known to be a 
performance metric for an estimator. Our third estimator is 
inspired by this observation. 

5.3 The third estimator 

The derivation of this estimator is much involved, but the 
underlying idea is simple. In estimation theory, an optimal 
estimator is an estimator that is unbiased and has minimum 
variance. Our derivation is driven by these two principles. 
The following derivations have been verified by symbolic 
computation engine WolframAlpha (WolframAlpha, n.d., 
http://www.wolframalpha.com). 

Since | ( ) |N A  and | ( ) |N B  are not mutually independent, 

we consider a third area. Let C = B\A. It is easy to see that 
( ) = ( ) \ ( )N C N B N A  so that | ( ) |N C  is independent of 

| ( ) |N A . For convenience, let =| ( ) |An N A  and =| ( ) |Cn N C . 

Let x̂  be the estimator. We assume  

ˆ = A Cx a n b n c     

where a, b, c are three constant parameters to be 
determined. They are irrelevant of nA and nC. It is interesting 
to consider several special cases. If we set a = 0 and b = 0, 
then this estimator degenerates into the traditional hop count 
– setting distance between neighbours as a constant. If we 
set a = 0, then the estimator becomes only relevant to the 
area C (the parameters b, c can be determined by the same 
procedure as follows). The case for b = 0 is similar. We 
consider the general case and will find a, b, c based on the 
two principles, unbiasness and minimum variance. 

To obtain unbiased estimator, we set  

ˆ= [ ]x E x  

so that 

2= (2 2 )x a A b r A c        
2 2 2= 2 ( ) (2 4 ( ) )a f x r b r f x r c         

2 2 2( 2 ) 2 4( )
2

a x r b r x r c
          

 
 

2 2= 2 (2 ) .r b a x a r c     



 Refining hop-count for localisation in wireless sensor networks 237 

The above equation holds for all x. So we can obtain the 
following equalities. Let 2= r  . (It is the average 

neighbourhood size, i.e., = [| ( ) |]E N i .)  

= ,
4 2
= .

a
b

c a






 

 

 (3) 

Now consider the variance of the estimator. 

2 2ˆ[ ] = [ ] [ ]A Cvar x a var n b var n    
2 2 2= (2 2 )a A b r A       
2 2 2 2 2= 2 ( ) (2 2 2 ( ) )a f x r b r f x r         

2 2 2 2 2( 2 ) 2 4( )
2

a x r b r x r
         

 
 

2 22 4
= .

x x
a b

 
 

   
 

 

Substituting equation (3) into the above equation and 
arranging the terms yield  

2ˆ[ ]
4

x x
var x a x a

 
 
      

 
 

2

=
2 ( )

x x
a

x

 
  

        
 

2 .
4

x

x

 
 
    

 

It is easy to see that / > 0x     since x < . To 
minimise ˆ[ ]var x , we set 

= .
2 ( )
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Substituting this term back into equation (3) leads to  
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Our estimator becomes  

ˆ = 1
2 ( ) 4
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From our derivation, we can see that ˆ[ ]E x x  and 

ˆ[ ] 2
4

var x x
x

 
 

     
 where ‘ ’ is due to the 

approximation of f(x) as g(x). 

We have several remarks about this estimator. Let us 

consider its variance ˆ[ ] 2
4

var x x
x

 
 

     
. For fixed 

x, the variance is inversely proportional to , the average 
neighbourhood size. This coincides with our intuition. The 
building block of the estimator is to approximate geometry 
area by the number of nodes within the area. The denser the 
nodes are, the better this approximation is. On the other 
hand, for fixed , the variance is not monotonic with respect 
to x, which is not intuitive. Specifically, the function 

2x
x




   
 has a turning point at 

1
= (2 2) 0.92

2
x   , 

before which it increases and then decreases slightly after. To 
examine whether this is caused by the approximation of f(x) as 
g(x), we check the exact expression of ˆ[ ]var x , which is  

 
2

2

2

( ) 1
1 / ( ) ( 2 ( )) .
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x f x
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  
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As computed by WolframAlpha (http://www.wolframalpha. 
com), for fixed , this function also has a turning point (at 

0.9661x  ). Therefore, we conclude that the variance of x̂  
is not strictly monotonic. However, since x̂  is not strictly 
unbiased, the slightly decreased variance after the turning 
point does not necessarily imply better estimation. 
Generally, it holds that smaller x gives smaller variance. 
This observation supports the shortest path distance 
methodology in the previous section, which favours shorter 
distance. 

Now we continue our derivation. For equation (4), each 
node can obtain nA and  nC by exchanging neighbour list as 
before. For the average neighbourhood size , we can use  
nA and  nC to compute  when no other information is 
available. Alternatively, when this estimator is incorporated 
to compute the distance between non-neighbours, we can 
compute  during the shortest path computation by adding a 
field in the broadcast messages. This can reduce the bias of 
the estimation of  due to small sample size. 

The term x is not easy to work out, since x is exactly 
what we want to estimate. Fortunately, there is a natural 
way to approximate it. The idea is to apply iterative 
approximation. We begin by setting x = 0, and then obtain 
x̂  by equation (4). Then we set ˆ=x x  and obtain a new 
estimation x̂  by equation (4). Repeat the process until 
convergence. We can take the converged x̂  as our 
estimator. This method, though straightforward, is difficult 
for analysis. It is unclear how much iterations are required. 
We take a different approach. Consider the converged x̂ . It 
must hold that  

ˆ ˆ ˆ
ˆ = 1 .
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Solving for x̂  yields two solutions  
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and  
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We can rule out 2x̂  by observing that  
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where the second inequality is due to Lemma 1. So we keep 
only the first solution. 

Then our third estimator is  
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A C C

l i j n n

n n n
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where  is the average neighbourhood size, 
=| ( ) ( ) |An N i N jÇ  and =| ( ) ( ) |C An N i N j nÈ . 

There are some additional remarks regarding average 
neighbourhood size . As mentioned before,  can be 
computed by adding each node’s neighbourhood size into 
the flooded message during shortest path computation. This 
is for homogeneous network that has a single average 
neighbourhood size . In fact, there is another natural way 
to compute . Each node can compute  by averaging over 
its own neighbours' neighbourhood sizes. For example, node 
i has | ( ) |N i  neighbours so that node i can average over 

| ( ) |N i  nodes’ neighbourhood sizes to obtain its local 

average neighbourhood size . In this way, not only 
overhead is further reduced, but also the resulting estimator 
can compensate for non-uniform node distribution. 

6 Numerical results of the estimators 

We have designed three estimators. In this section, we study 
their effectiveness from two perspectives: bias and variance. 
This is done by generating Poisson distributed random 
numbers and comparing the estimated parameter against the 
ground truth. We first introduce how we design the study 
and then give the results. 

6.1 Methodology 

The three estimators are irrelevant of transmission range r, 
so we consider a unit disk scenario in Figure 4. Suppose the 
average neighbourhood size is  and the distance between i 
and j is x. According to our assumptions, we can check that  

1

2

2
| ( ) | ( ) ,

2
| ( ) | ( ) ,

2
| ( ) | ( ) .

N C Pois f x

N C Pois f x

N A Pois f x
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 
  
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


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 (6) 

More importantly, 1 2| ( ) |,| ( ) |,| ( ) |N C N C N A  are mutually 

independent of each other. We have 

1| ( ) |=| ( ) | | ( ) |N i N C N A , 2| ( ) |=| ( ) | | ( ) |N j N C N A , 

| ( ) ( ) |=| ( ) |N i N j N AÇ  and 1 2| ( ) ( )|=| ( )| | ( )| | ( )|N i N j N C N C N A È . 

Several of these terms are fed into the estimators to compute 
the estimation for x. 

We consider for  = 5(sparse), 10(moderate), 20(dense) and 
x = 0.1, 0.2, …, 0.9. For each d, x pair, we randomly sample 
5000 1 2(| ( ) |, | ( ) |, | ( ) |)N C N C N A  tuples independently 

according to equation (6). For each tuple, we use the three 
estimators to estimate x. 

Figure 4 Simulated scenario: the three areas C1, A and C2 are 
non-overlapping (see online version for colours)  

 

The design follows closely with our assumptions. The 
performance of each estimator includes the effect of 
approximation f(x) by g(x). 

6.2 Bias 

Define bias as the absolute gap between estimated x and the 
ground-truth x where the estimated x is the averaged 
estimation for 5000 tuples. Bias is unavoidable due to the 
approximation of f(x) as g(x). However, as Lemma 1 shows, 
this approximation has an error of at most 0.044, which is 
quite small. Figure 5 shows the bias of three estimators with 
respect to  and x. 

We have two non-intuitive observations. First, the biases 
of all three estimators are within 0.044, which is the 
approximation error of f(x) as g(x). This result is not 
obvious, since each estimator involves several occurrences 
of f(x). Such bias is acceptable. Second, the bias trends of 

1l  and 3l  are similar, which are different from 2l  for  = 5, 

10. This is not expected since the derivations of 1l  and 2l  

are the same while the derivation of 3l  follows another idea. 
Nevertheless, it is safe to say that bias generally grows with 
respect to x. 
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Figure 5 Bias of three estimators.  is the average neighborhood size. All three cases have negligible bias (see online version for colours) 

 

Figure 6 Standard deviation of three estimators. (see online version for colours) 

 

6.3 Variance 

Figure 6 shows the standard deviation (square root of the 
variance) of each estimator. All three estimators have 
smaller variance for larger , which coincides with intuition. 
The denser the network is, the better the approximation of 
geometry area as the number of nodes is. Among the three 

estimators, 3l  has consistent smaller variance than the other 

two estimators. This is due to the fact that 3l  is derived 

following the minimum variance principle. 1l  has smaller 

variance than 2l , and the gap vanishes when the network 
becomes dense ( = 20). 

7 Evaluations 

In this section, we combine the distance estimator for 
neighbours with shortest path distance estimation for non-
neighbours, leading to three refined hop-counts 1 2,l l  and 3l . 

Besides comparison among these three, we also compare them 
with the traditional hop-count h. We first study the factors 
influencing refined hop-counts, which is necessary due to the 
incorporation of shortest path computation. Then we study how 
localisation methods can benefit from refined hop-counts. At 
last, we relax assumptions and observe their impacts. In the 
following, we set the transmission range i = 1. 

7.1 Factors influencing l 

By considering our derivation, we can pick out two factors: 
(a) physical distance. It can influence both the estimator for  
 

neighbours and the shortest path computation; (b) node 
density . It is the source of randomness in the estimator for 
neighbours. For low density network, the number of 
neighbours is very few, which causes high bias for the 
estimating of area by number of nodes. We conduct two set 
of simulations to study the two factors. 

In the first scenario, we fix the network field as 10  10 
square and vary the distance between two nodes. We 
compute the refined hop-count between the two nodes for 
d = 0.5, 1.0, …, 5.0. For each distance d, we fix two nodes’ 
locations in the network such that they are relatively in the 
centre of the field to avoid edge effect, and their distance is 
d. Then we uniformly generate 398 nodes. For each distance 
we perform 50 iterations. We show the estimation error   
( = l d   where 1 2 3= , ,l l l l ) and the standard deviation of 

each estimator in Figure 7. We can see that all three 
estimators perform reasonably well, with error at most 0.2 
and standard deviation at most 0.5. The third estimator has 
smaller standard deviation in general. 

In the second scenario, we fix two nodes in the network 
with distance 3 (we can see that 2–5 is roughly the same 
from the above simulation), and vary the node density by 
varying the total number of nodes. We study for n = 200, 
300,…, 600, which correspond to node density  = 2,3,…,6. 
For each number n, we perform 50 iterations. Figure 8 
shows that both the estimation error and the standard 
deviation decrease with the increase of node density, which 
is expected. The third estimator still provides smaller 
standard deviation. Additionally, the estimation error for all 
three estimators becomes negligible after   4. 
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Figure 7 Refined hop-count for varying distance. (see online version for colours) 

 

Figure 8 Refined hop-count for varying density. The distance between two nodes is fixed as 3. Note that in our settings a network with 
density  is equivalent to a network with 100 nodes, or a network where each node has  neighbours (including itself) on 
average (see online version for colours) 

 
 

7.2 The effectiveness of hop-count refining method 
on localisation methods 

Though our main focus is in refining hop-count, in this 
subsection, we also study its impact on localisation 
methods. It is worth mentioning that localisation error is an 
effect of both distance estimation error and the error of 
localisation method itself (e.g. the number of anchor nodes). 

We compare our refined hop-count l with the traditional 
hop-count h. For other methods, RSD (Zhong and He, 2009) 
requires the knowledge of RSSI, which is not available 
under our model. It is worth mentioning that l1 can be 
considered as the estimator in the work of Kroller et al. 
(2006) extended by shortest path computation and l2 can be 
considered as the estimator in the work of Aslam et al. 
(2009) extended by shortest path computation. For 
localisation method, we choose the popular DV-hop 
method, due to the fact that it is fully distributed and easy to 
implement. The widely used evaluation metric for a 
localisation method is the median localisation error with 
localisation error being the physical distance between the 
estimated position and the ground-truth, and the median 
being taken over unknown nodes. We treat traditional hop-
count method as baseline, and compute the percentage error 
reduction  defined as  

= h l

h

e e

e



 

where eh is the median localisation error for traditional hop-
count method, and el is the median localisation error for our 

refined hop-count.   0 implies that refined hop-count l 
incurs less error. The higher  is, the less error l incurs. 

In the first experiment, we fix node density as 4 and 
vary the number of anchors as 4,5, …, 8. Figure 9 shows 
that all three refined hop-counts improve over original hop-
count consistently. The improvement can be up to 15%. All 
three refined hop-counts have comparable performance, 
with l3 better than the other two. 

Figure 9 Error reduction for varying the number of anchors. The 
higher the bar is, the better the hop-count is. The node 
density is 4 and the result for each anchor number is 
averaged over 50 networks (see online version for colours) 

 

In the second experiment, we vary node density as 2,3, …, 
6. Figure 10 shows that the improvement magnitude 
increases with the increase of node density for all three 
refined hop-counts. For low density scenario ( = 2), l1 and 
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l2 give no improvement, but the error reduction can be up to 
25% when node density is 6. The refined hop-count l3 
provides consistent improvement. 

Figure 10 Error reduction for varying densities. The anchor 
number is 6 and the result for each density is averaged 
over 50 networks (see online version for colours) 

 

7.3 Beyond the assumed scenario 

We consider radio irregularity and non-uniform node 
distribution in this subsection. 

To model radio irregularity, we use the DOI model 
proposed by He et al. (2003). For each sensor node, its radio 
coverage is irregular as follows: all nodes at a distance less 
than rlow can receive the signal; all nodes at a distance larger 
than rhigh cannot receive the signal, only a portion of nodes 
at a distance between rlow and rhigh can receive the signal. 
The irregularity of radio coverage is determined by DOI 
value, defined as the maximum radio range variations  
per unit degree change. We show one radio pattern with 
DOI = 0.2 in Figure 11. In simulations, all nodes lie in the 
coverage range can receive the signal from the sender. We 
set = 0.8lowr r  and = 1.2highr r  in the simulation. As before, 

we set r as the unit length. We set the number of anchors as 
6 and the number of nodes as 400. We vary DOI from 0.05 
to 0.25 with a spacing of 0.05. For each DOI, we run 50 
iterations. 

Figure 11 One radio coverage scenario when DOI=0.1. Radio 
boundary is illustrated by the solid irregular curve.  
The inner circle has radius 0.8 and outer circle has 
radius 1.2. (see online version for colours) 

 

Figure 12 shows that our refined hop-counts perform stable 
over different DOIs and consistently better than the traditional 
hop-count h. This is due to fact that l computes a fine-grained 
hop-count between neighbours and use the shortest path 
distance, which reduces the effect of irregularity. The hop-
count l3 performs better than the other two. 

Figure 12 Median localization error for varying DOI. The anchor 
number is 6 and the result for each DOI is averaged 
over 50 networks (see online version for colours) 

 

In the second scenario, we consider non-uniform node 
distribution. It is worth mentioning that there are works 
specifically tackling the anisotropic node distribution 
problem (Lim and Hou, 2005; Li and Liu, 2010). We do not 
target this goal specifically, and we believe their solution 
can be improved by replacing hop-count with our refined 
hop-count. 

To model non-uniform distribution, we place nodes in a 
C-shape area as illustrated in Figure 13. Node density is 4. 
The parameter t controls the size of the hole. When t = 5, 
the hole disappears. 

Figure 13 C-shaped area. It is obtained by cutting off a 
(10 ) (10 2 )t t    rectangle from a 10  10 square. 
The parameter t determines the irregularity of the shape 

 

We consider t = 1, …, 5. Figure 14 shows the result. We 
find that refined hop-count l3 always reduces localisation 
error, while the other two (l1 and l2) may increase error for 
some case (t = 2). 

In summary, we find that our refined hop-counts can 
still help reduce localisation error in scenarios beyond our 
assumptions. Among the three hop-counts, l3 gives steady 
performance improvement. This is caused by its minimum 
variance design. 
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Figure 14 Error reduction for different C-shape. Note that the C-shape 
disappears when t = 5 (see online version for colours) 

 

8 Conclusion 

In this paper, we derive refined hop-counts for localisation 
in two-dimensional wireless sensor networks. In our 
derivation, we use the circular radio coverage assumption to 
find a relationship between distance and the area of a 
geometry region, and then use the uniform node distribution 
to relate the number of nodes to the area of geometric 
region. Applying this idea leads to three distance estimators 
for neighbours. To compute the estimators, sensor nodes 
only need to exchange messages locally. Non-neighbours 
can use a DV-like protocol to compute the shortest path 
between them, and their distance is approximated as the 
length of the shortest path. We use simulations to study the 
factors influencing refined hop-counts and find that they 
work better in a network with higher density (above 5 per 
unit square). We also find that they improve the 
performance of localisation methods, both under our 
assumed model and a relaxed model scenario. 
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